Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros













Intervalo de año de publicación
1.
Bioorg Chem ; 144: 107147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280357

RESUMEN

The strategy of bioactivity-guided isolation is widely used to obtain active compounds as quickly as possible. Thus, the inhibitory effects on human erythroleukemia cells (HEL) were applied to guide the isolation of the anti-leukemic compounds from Aglaia abbreviata. As a result, 19 compounds (16 steroids, two phenol derivatives, and a rare C12 chain nor-sesquiterpenoid), including 13 new compounds, were isolated and identified based on spectroscopic data analysis, single-crystal X-ray diffraction data, and electronic circular dichroism (ECD) calculations. Among them, 9 steroids exhibited good selective anti-leukemic activity against HEL and K562 (human chronic myeloid leukemia cells) cells with IC50 values between 2.29 ± 0.18 µM and 19.58 ± 0.13 µM. Notably, all the active compounds had relatively lower toxicity on the normal human liver cell line (HL-7702). Furthermore, five compounds (1, 4, 8, 10, and 19) displayed good anti-inflammatory effects, with IC50 values between 7.15 ± 0.16 and 27.1 ± 0.37 µM. An α,ß-unsaturated ketone or a 5,6Δ double bond was crucial for improving anti-leukemic effect from the structure-activity relationship analysis. The compound with the most potential, 14 was selected for the preliminary mechanistic study. Compound 14 can induce apoptosis and cause cell cycle arrest. The expression of the marker proteins, such as PARP and caspase 3, were notably effected by this compound, thus inducing apoptosis. In conclusion, our investigation implied that compound 14 may serve as a potential anti-leukemia agent.


Asunto(s)
Aglaia , Humanos , Aglaia/química , Apoptosis , Bioensayo , Estructura Molecular , Esteroides/farmacología , Relación Estructura-Actividad , Antineoplásicos/química , Antineoplásicos/farmacología
2.
Chem Biodivers ; 21(2): e202301703, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38055204

RESUMEN

Three undescribed limonoids (1-3), named aglaians G-I, and one new natural product azedaralide (4), together with nine known analogues (5-13) were isolated from the branches and leaves of Aglaia lawii by RP C18 column, silica gel column, Sephadex LH-20 column chromatography and preparative HPLC. The structures of the new compounds were elucidated by IR, HRESIMS, 1D, 2D NMR, electronic circular dichroism (ECD) calculations and X-ray crystallography diffraction analysis. The results of bioassay showed that the compound 12 exhibited potential inhibitory activity against six human tumor cell lines (MDA-MB-231, MCF-7, Ln-cap, A549, HeLa and HepG-2) with IC50 values as 8.0-18.6 µM.


Asunto(s)
Aglaia , Antineoplásicos , Limoninas , Humanos , Aglaia/química , Limoninas/farmacología , Limoninas/química , Estructura Molecular , Línea Celular Tumoral
3.
Molecules ; 28(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446608

RESUMEN

The Aglaia genus, a member of the Meliaceae family, is generally recognized to include a number of secondary metabolite compounds with diverse structures and biological activities, including triterpenoids. Among the members of this genus, Aglaia cucullata has been reported to have unique properties and thrives exclusively in mangrove ecosystems. This plant is also known to contain various metabolites, such as flavaglines, bisamides, and diterpenoids, but there are limited reports on the isolation of triterpenoid compounds from its stem bark. Therefore, this research attempted to isolate and elucidate seven triterpenoids belonging to dammarane-type (1-7) from the stem bark of Aglaia cucullata. The isolated compounds included 20S,24S-epoxy-3α,25-dihydroxy-dammarane (1), dammaradienone (2), 20S-hydroxy-dammar-24-en-3-on (3), eichlerianic acid (4), (20S,24RS)-23,24-epoxy-24-methoxy-25,26,27-tris-nor dammar-3-one (5), 3α-acetyl-cabraleahydroxy lactone (6), and 3α-acetyl-20S,24S-epoxy-3α,25-dihydroxydammarane (7). Employing spectroscopic techniques, the chemical structures of the triterpenoids were identified using FTIR, NMR, and HRESITOF-MS. The cytotoxic activity of compounds 1-7 was tested with the PrestoBlue cell viability reagent against MCF-7 breast cancer, B16-F10 melanoma, and CV-1 normal kidney fibroblast cell lines. The results displayed that compound 5 had the highest level of bioactivity compared to the others. Furthermore, the IC50 values obtained were more than 100 µM, indicating the low potential of natural dammarane-type triterpenoids as anticancer agents. These findings provided opportunities for further studies aiming to increase their cytotoxic activities through semi-synthetic methods.


Asunto(s)
Aglaia , Antineoplásicos , Meliaceae , Triterpenos , Aglaia/química , Meliaceae/química , Corteza de la Planta/química , Ecosistema , Triterpenos/química , Espectroscopía de Resonancia Magnética , Antineoplásicos/análisis , Estructura Molecular
4.
Phytochemistry ; 214: 113792, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454887

RESUMEN

Phytochemical study on the methanol extract of Aglaia odorata leaves resulted in the isolation of four previously undescribed compounds, including three 2,9-deoxyflavonoids and one flavonol-diamide [3 + 2] adduct, and 13 known compounds. The chemical structures of the four undescribed compounds were elucidated on the basis of their IR, HR-ESI-MS, 1D and 2D NMR, and ECD spectra. The results revealed an unprecedented 2,9-deoxyflavonoid framework, which was confirmed by TD-DFT, ECD, and GIAO 13C-NMR calculations using sorted training set methods. The 17 compounds were examined for their ability to inhibit NO production activity in cultured lipopolysaccharide-activated RAW264.7 cells with aglaodoratas A-C, odorine, and epi-odorine inhibiting NO production, with IC50 values in the range of 16.2-24.3 µM. The other investigated compounds had either weak or no activity.


Asunto(s)
Aglaia , Aglaia/química , Diamida/análisis , Óxido Nítrico , Extractos Vegetales/química , Hojas de la Planta/química , Estructura Molecular
5.
Nat Prod Res ; 37(23): 3923-3934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36580570

RESUMEN

Three new compounds (1-3), including two bisamide derivatives (1 and 2) and a lignin (3), along with 15 known compounds were isolated from Aglaia odorata. Compound 2 was a pair of enantiomers and successfully resolved into the anticipated enantiomers. Their structures were elucidated by extensive spectroscopic analysis, electronic circular dichroism (ECD) calculations, and X-ray crystallography. Three compounds showed excellent inhibitory activities on α-glucosidase with IC50 values ranging from 54.48 to 240.88 µM, better than that of the positive control (acarbose, IC50 = 590.94 µM). Moreover, compounds 3, 13, and 15 presented moderate inhibitory activities against butyrylcholinesterase. Compound 17 exhibited potent PTP1B inhibitory activity with an IC50 value of 179.45 µM. Representative active compounds were performed for the molecular docking study. Herein, we described the isolation, structure elucidation, the inhibitory effects on three enzymes, and molecular docking of the isolates from the title plant.


Asunto(s)
Aglaia , Aglaia/química , Aglaia/metabolismo , Simulación del Acoplamiento Molecular , Butirilcolinesterasa , Estructura Molecular , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología
6.
Fitoterapia ; 162: 105260, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35931289

RESUMEN

Twelve sesquiterpenoids with seven different carbon skeletons, including four isodaucanes (1-4), an aromadendrane (5), a guaiane (6), a cadalane (7), two eudesmanes (8 and 9), two bisabolanes (10 and 11), and a megastigmane (12), were isolated from the twigs and leaves of Aglaia lawii (Wight) C. J. Saldanha et Ramamorthy. Of these compounds, amouanglienoids A (1) and B (2) are new isodaucane sesquiterpenoids. This is the first report of isodaucanes from the genus Aglaia, and amouanglienoid A (1) represents the first isodaucane containing a Δ7(8) double bond. Their structures were discerned from extensive spectroscopic analyses, single-crystal X-ray diffraction, and comparison of the experimental and calculated ECD data. In in vitro bioassays, compounds 1, 10, and 11 showed potent inhibitory effects against lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells, while compound 11 exhibited considerable inhibition of PTP1B with an IC50 value of 16.05 ± 1.09 µM.


Asunto(s)
Aglaia , Sesquiterpenos de Eudesmano , Sesquiterpenos , Aglaia/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Carbono , Lipopolisacáridos , Estructura Molecular , Sesquiterpenos Monocíclicos , Norisoprenoides , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos de Eudesmano/química
7.
Chem Biodivers ; 19(4): e202101008, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35194923

RESUMEN

Three new aglain derivatives (1-3), one known aglain derivative (4), two known rocaglamide derivatives (5 and 6), four known triterpenoids (7-10), and three steroids (11-13) were isolated from Aglaia odorata Lour. Their structures were established through the analysis of detailed spectroscopic data and electronic circular dichroism calculations. Five compounds (1 and 4-7) exhibited cytotoxic activities on human leukemia cells (HEL) and human breast cancer cells with IC50 values in the range of 0.03-8.40 µM. In particular, the cytotoxicity of compound 5 was six times stronger than that of the positive control (adriamycin) in HEL cell lines.


Asunto(s)
Aglaia , Antineoplásicos Fitogénicos , Antineoplásicos , Triterpenos , Aglaia/química , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Dicroismo Circular , Humanos , Estructura Molecular , Extractos Vegetales/química , Triterpenos/química
8.
Nat Prod Res ; 36(6): 1494-1502, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33703953

RESUMEN

Two new rocaglamides, 8b-O-5-oxohexylrocaglaol (1) and elaeagnin (2), together with twelve known compounds, were isolated from the bark of Aglaia elaeagnoidea and the whole tree of A. odorata. Their structures were determined using spectroscopic methods, mainly 1D and 2D NMR. Cytotoxic activity against HepG2 human liver cancer cells of the isolated compounds was evaluated in vitro using the SRB assay. Three rocaglamide derivatives, dehydroaglaiastatin (13), 8b-O-5-oxohexylrocaglaol (1) and rocaglaol (5), exhibited significant effects with IC50 values of 0.69, 4.77 and 7.37 µM, respectively.


Asunto(s)
Aglaia , Aglaia/química , Células Hep G2 , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología
9.
Asian Pac J Cancer Prev ; 22(1): 53-60, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507679

RESUMEN

BACKGROUND: The genus Aglaia (Meliaceae) is an established source of many anticancer compounds. The study evaluated the leaf extracts of Aglaia loheri, a tree native to the Philippines, as potential source of anticancer compounds. METHODS: Using bioassay-guided fractionation, A. loheri leaf extract was subjected to various chromatographic techniques and step-wise application of MTT assay on human colorectal carcinoma cells, HCT116, to determine the cytotoxic fractions. The most cytotoxic HPLC isolate was structurally identified using 1D and 2D NMR and its apoptotic effect was assessed by JC-1 staining, caspase 3/7 assay and TUNEL assay. RESULTS: After stepwise chromatography fractionation, an HPLC isolate, structurally identified as aglaforbesin derivative (AFD), demonstrated potent cytotoxicity against HCT116. AFD exhibited strong toxicity (IC50 = 1.13 ±0.07 µg/mL) and high selectivity on HCT116 than normal human kidney cells (HK-2). AFD-induced toxicity to HCT116 is possibly through the stimulation of the apoptotic signaling pathway via caspase 3/7 activation and DNA fragmentation independent of mitochondrial membrane depolarization. CONCLUSION: AFD exhibited selective cytotoxicity and apoptotic activity to HCT116 and could be further developed as anticancer drug lead.


Asunto(s)
Aglaia/química , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Neoplasias Colorrectales/patología , Mitocondrias/patología , Extractos Vegetales/farmacología , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Mitocondrias/efectos de los fármacos , Células Tumorales Cultivadas
10.
Sci Rep ; 10(1): 13750, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792639

RESUMEN

Glioblastoma (GBM) is one of the most aggressive types of cancer, which begins within the brain. It is the most invasive type of glioma developed from astrocytes. Until today, Temozolomide (TMZ) is the only standard chemotherapy for patients with GBM. Even though chemotherapy extends the survival of patients, there are many undesirable side effects, and most cases show resistance to TMZ. FL3 is a synthetic flavagline which displays potent anticancer activities, and is known to inhibit cell proliferation, by provoking cell cycle arrest, and leads to apoptosis in a lot of cancer cell lines. However, the effect of FL3 in glioblastoma cancer cells has not yet been examined. Hypoxia is a major problem for patients with GBM, resulting in tumor resistance and aggressiveness. In this study, we explore the effect of FL3 in glioblastoma cells under normoxia and hypoxia conditions. Our results clearly indicate that this synthetic flavagline inhibits cell proliferation and induced senescence in glioblastoma cells cultured under both conditions. In addition, FL3 treatment had no effect on human brain astrocytes. These findings support the notion that the FL3 molecule could be used in combination with other chemotherapeutic agents or other therapies in glioblastoma treatments.


Asunto(s)
Antineoplásicos/farmacología , Astrocitos/efectos de los fármacos , Benzofuranos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Senescencia Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Aglaia/química , Anaerobiosis/fisiología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Glioblastoma/patología , Humanos , Preparaciones de Plantas/farmacología
11.
Eur J Med Chem ; 203: 112653, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32693294

RESUMEN

Flavaglines are cyclopenta[b]benzofurans found in plants of the genus Aglaia, several species of which are used in traditional Chinese medicine. These compounds target the initiation factor of translation eIF4A and the scaffold proteins prohibitins-1 and 2 (PHB1/2) to exert various pharmacological activities, including antiviral effects against several types of viruses, including coronaviruses. This review is focused on the antiviral effects of flavaglines and their therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Asunto(s)
Aglaia/química , Antivirales/uso terapéutico , Productos Biológicos/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Factor 4A Eucariótico de Iniciación/genética , Neumonía Viral/tratamiento farmacológico , Proteínas Represoras/genética , Animales , COVID-19 , Factor 4A Eucariótico de Iniciación/efectos de los fármacos , Humanos , Medicina Tradicional China , Pandemias , Prohibitinas , Proteínas Represoras/efectos de los fármacos
12.
Molecules ; 25(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182779

RESUMEN

Three new inositol angelate compounds (1-3) and two new tirucallane-type alkaloids (4 and 5) were isolated from the Amoora dasyclada, and their structures were established mainly by means of combination of 1D and 2D nuclear magnetic resonance and HR-ESI-MS. Based on cytotoxicity testing, compounds 4 and 5 exhibited significant cytotoxic activity against human cancer cell line HepG2 with IC50 value at 8.4 and 13.2 µM. In addition, compounds 4 and 5 also showed remarkable growth inhibitory activity to Artemia salina larvae.


Asunto(s)
Aglaia/química , Alcaloides/química , Proliferación Celular/efectos de los fármacos , Inositol/química , Alcaloides/farmacología , Células Hep G2 , Humanos , Inositol/análogos & derivados , Inositol/farmacología , Neoplasias/tratamiento farmacológico , Triterpenos/química , Triterpenos/farmacología
13.
J Ethnopharmacol ; 248: 112336, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31669102

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Aglaia odorata Lour. is a traditional Chinese medicinal plant possessing properties of improving blood circulation, and it is widely used in the treatment of dizziness, traumatic injuries and bruises. AIM OF STUDY: In this study, we are aimed to investigate the cerebral protection effect of the extracts from leaves of Aglaia odorata Lour. (ELA) and the potential mechanism in vivo and in vitro. MATERIALS AND METHODS: The therapeutic effect of ELA on ischemic cerebral stroke was measured on a middle cerebral artery occlusion (MCAO) rat model. Protective effect of ELA on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cells was measured by MTT assay. The apoptotic cells were observed by Hoechst 33258 staining and acridine orange/ethidium bromide double staining assay. Mitochondria were observed by Mitotracker staining assay. The mitochondrial membrane potential was determined by JC-1 staining assay. Western blot was used to investigate the effects of ELA on apoptosis-related proteins. RESULTS: We showed that ELA was an effective neuroprotective agent. In vivo experiments, ELA exerted significant protective effect on MCAO model. TTC staining showed that ELA could reduce cerebral infarction area against MCAO insult. HE and Nissl's staining indicated that ELA could reverse the damage of cortex and hippocampus caused by MCAO. In vitro experiments, ELA showed significant protective effect on OGD/R-induced PC12 cells by reducing the number of apoptotic cells, increasing mitochondrial membrane potential, and reducing superoxide aggregation, further suppressing mitochondrial caspase-9/3 apoptosis pathway. Moreover, protective effect of ELA on mitochondrial function may be exerted by inhibiting p53/Puma signal pathway. CONCLUSION: Our results suggest that ELA exerts a marked neuroprotective effect against cerebral ischemia potentially via suppressing p53/Puma-mediated mitochondrial caspase-9/3 apoptosis pathway.


Asunto(s)
Aglaia , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Infarto de la Arteria Cerebral Media/prevención & control , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Aglaia/química , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Células PC12 , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Transducción de Señal
14.
Mol Cancer Ther ; 19(3): 731-741, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31848295

RESUMEN

Malignant peripheral nerve sheath tumors (MPNST) frequently overexpress eukaryotic initiation factor 4F components, and the eIF4A inhibitor silvestrol potently suppresses MPNST growth. However, silvestrol has suboptimal drug-like properties, including a bulky structure, poor oral bioavailability (<2%), sensitivity to MDR1 efflux, and pulmonary toxicity in dogs. We compared ten silvestrol-related rocaglates lacking the dioxanyl ring and found that didesmethylrocaglamide (DDR) and rocaglamide (Roc) had growth-inhibitory activity comparable with silvestrol. Structure-activity relationship analysis revealed that the dioxanyl ring present in silvestrol was dispensable for, but may enhance, cytotoxicity. Both DDR and Roc arrested MPNST cells at G2-M, increased the sub-G1 population, induced cleavage of caspases and PARP, and elevated the levels of the DNA-damage response marker γH2A.X, while decreasing the expression of AKT and ERK1/2, consistent with translation inhibition. Unlike silvestrol, DDR and Roc were not sensitive to MDR1 inhibition. Pharmacokinetic analysis confirmed that Roc had 50% oral bioavailability. Importantly, Roc, when administered intraperitoneally or orally, showed potent antitumor effects in an orthotopic MPNST mouse model and did not induce pulmonary toxicity in dogs as found with silvestrol. Treated tumors displayed degenerative changes and had more cleaved caspase-3-positive cells, indicative of increased apoptosis. Furthermore, Roc effectively suppressed the growth of osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma cells and patient-derived xenografts. Both Roc- and DDR-treated sarcoma cells showed decreased levels of multiple oncogenic kinases, including insulin-like growth factor-1 receptor. The more favorable drug-like properties of DDR and Roc and the potent antitumor activity of Roc suggest that these rocaglamides could become viable treatments for MPNST and other sarcomas.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Benzofuranos/química , Benzofuranos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neurofibrosarcoma/tratamiento farmacológico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Aglaia/química , Animales , Apoptosis , Caspasa 3/metabolismo , Ciclo Celular , Proliferación Celular , Humanos , Ratones , Neurofibrosarcoma/metabolismo , Neurofibrosarcoma/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Nat Prod ; 82(10): 2870-2877, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31621322

RESUMEN

Four new cyclopenta[b]benzofuran derivatives based on an unprecedented carbon skeleton (1-4), with a dihydrofuran ring fused to dioxanyl and aryl rings, along with a new structural analogue (5) of 5‴-episilvestrol (episilvestrol, 7), were isolated from an aqueous extract of a large-scale re-collection of the roots of Aglaia perviridis collected in Vietnam. Compound 5 demonstrated mutarotation in solution due to the presence of a hydroxy group at C-2‴, leading to the isolation of a racemic mixture, despite being purified on a chiral-phase HPLC column. Silvestrol (6) and episilvestrol (7) were isolated from the most potently cytotoxic chloroform subfraction of the roots. All new structures were elucidated using 1D and 2D NMR, HRESIMS, IR, UV, and ECD spectroscopic data. Of the five newly isolated compounds, only compound 5 exhibited cytotoxic activity against a human colon cancer (HT-29) and human prostate cancer cell line (PC-3), with IC50 values of 2.3 µM in both cases. The isolated compounds (1-5) double the number of dioxanyl ring-containing rocaglate analogues reported to date from Aglaia species and present additional information on the structural requirements for cancer cell line cytotoxicity within this compound class.


Asunto(s)
Aglaia/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Benzofuranos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Benzofuranos/química , Benzofuranos/farmacología , Células HT29 , Humanos , Espectroscopía de Resonancia Magnética , Células PC-3 , Extractos Vegetales/análisis , Raíces de Plantas/química , Triterpenos/aislamiento & purificación
16.
Sci Rep ; 9(1): 1265, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718665

RESUMEN

Translation is a highly regulated process that is perturbed in human cancers, often through activation of the PI3K/mTOR pathway which impacts directly on the ribosome recruitment phase of translation initiation. While significant research has focused on "drugging" components of the PI3K/mTOR network, efforts have also been directed towards inhibiting eukaryotic initiation factor (eIF) 4F-dependent translation. Small molecule inhibitors of this complex have been identified, characterized, and used to validate the rationale of targeting this step to curtail tumor cell growth and modulate chemotherapy response. One such class of compounds are the rocaglates, secondary metabolites from the plant genus Aglaia, which target the RNA helicase subunit of eIF4F, eIF4A. Here we explore the ability of synthetic derivatives of aglaiastatins and an aglaroxin derivative to target the translation process in vitro and in vivo and find the synthetic derivative oxo-aglaiastatin to possess such activity. Oxo-aglaiastatin inhibited translation in vitro and in vivo and synergized with doxorubicin, ABT-199 (a Bcl-2 antagonist), and dexamethasone when tested on hematological cancer cells. The biological activity of oxo-aglaiastatin was shown to be a consequence of inhibiting eIF4A1 activity.


Asunto(s)
Aglaia , Antineoplásicos Fitogénicos/farmacología , Neoplasias/tratamiento farmacológico , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Aglaia/química , Animales , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Sinergismo Farmacológico , Factor 4A Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Linfoma/tratamiento farmacológico , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Sulfonamidas/farmacología
17.
Mol Cell ; 73(4): 738-748.e9, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30595437

RESUMEN

A class of translation inhibitors, exemplified by the natural product rocaglamide A (RocA), isolated from Aglaia genus plants, exhibits antitumor activity by clamping eukaryotic translation initiation factor 4A (eIF4A) onto polypurine sequences in mRNAs. This unusual inhibitory mechanism raises the question of how the drug imposes sequence selectivity onto a general translation factor. Here, we determined the crystal structure of the human eIF4A1⋅ATP analog⋅RocA⋅polypurine RNA complex. RocA targets the "bi-molecular cavity" formed characteristically by eIF4A1 and a sharply bent pair of consecutive purines in the RNA. Natural amino acid substitutions found in Aglaia eIF4As changed the cavity shape, leading to RocA resistance. This study provides an example of an RNA-sequence-selective interfacial inhibitor fitting into the space shaped cooperatively by protein and RNA with specific sequences.


Asunto(s)
Benzofuranos/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN/metabolismo , Ribosomas/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Aglaia/química , Aglaia/genética , Aglaia/metabolismo , Sustitución de Aminoácidos , Benzofuranos/química , Benzofuranos/aislamiento & purificación , Benzofuranos/farmacología , Sitios de Unión , Resistencia a Medicamentos/genética , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Inhibidores de la Síntesis de la Proteína/farmacología , ARN/química , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/genética , Relación Estructura-Actividad
18.
Antiviral Res ; 157: 151-158, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30036559

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genus Orthohepevirus in the family Hepeviridae. HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients and type I interferon (IFN) has been evaluated in a few infected transplantation patients in vivo. However, no effective and specific treatments against HEV infections are currently available. In this study, we evaluated the natural compound silvestrol, isolated from the plant Aglaia foveolata, and known for its specific inhibition of the DEAD-box RNA helicase eIF4A in state-of-the-art HEV experimental model systems. Silvestrol blocked HEV replication of different subgenomic replicons in a dose-dependent manner at low nanomolar concentrations and acted additive to ribavirin (RBV). In addition, HEV p6-based full length replication and production of infectious particles was reduced in the presence of silvestrol. A pangenotypic effect of the compound was further demonstrated with primary isolates from four different human genotypes in HEV infection experiments of hepatocyte-like cells derived from human embryonic and induced pluripotent stem cells. In vivo, HEV RNA levels rapidly declined in the feces of treated mice while no effect was observed in the vehicle treated control animals. In conclusion, silvestrol could be identified as pangenotypic HEV replication inhibitor in vitro with additive effect to RBV and further demonstrated high potency in vivo. The compound therefore may be considered in future treatment strategies of chronic hepatitis E in immunocompromised patients.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis E/efectos de los fármacos , Hepatitis E/tratamiento farmacológico , Triterpenos/farmacología , Replicación Viral/efectos de los fármacos , Aglaia/química , Animales , Antivirales/administración & dosificación , Antivirales/aislamiento & purificación , Células Cultivadas , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Heces/virología , Virus de la Hepatitis E/crecimiento & desarrollo , Humanos , Ratones , Ribavirina/farmacología , Triterpenos/administración & dosificación , Triterpenos/aislamiento & purificación , Carga Viral
19.
Proc Natl Acad Sci U S A ; 115(10): E2366-E2375, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463745

RESUMEN

Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.


Asunto(s)
Aglaia/química , Antimaláricos/administración & dosificación , Malaria Cerebral/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
20.
Chem Pharm Bull (Tokyo) ; 65(3): 295-299, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28250350

RESUMEN

Four new prenylated bibenzyls, named aglaiabbrevins A-D (2, 4-6), were isolated from the leaves of Aglaia abbreviata, along with two known related analogues, 3,5-dihydroxy-2-[3,7-dimethyl-2(E),6-octadienyl]bibenzyl (7) and 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl (8). The structures of the new compounds were elucidated on the basis of extensive spectroscopic experiments, mainly one and two dimensional (1D- and 2D)-NMR, and the absolute configuration of 5 was determined by the measurement of specific rotation. The isolated compounds were evaluated for their protein tyrosine phosphatase-1B (PTP1B) inhibitory activity. The results showed that compounds 5-7 exhibited more potent PTP1B inhibitory effects with IC50 values of 2.58±0.52, 2.44±0.35, and 2.23±0.14 µM, respectively, than the positive control oleanolic acid (IC50=2.74±0.20 µM). On the basis of the data obtained, these bibenzyls with the longer C-2 prenyl groups may be considered as potential lead compounds for the development of new anti-obesity and anti-diabetic agents. Also, the PTP1B inhibitory effects for prenylated bibenzyls are being reported for the first time.


Asunto(s)
Aglaia/química , Bibencilos/farmacología , Inhibidores Enzimáticos/farmacología , Hojas de la Planta/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Bibencilos/química , Bibencilos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Estructura Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA